Skip to main content

Why Automatic TTL Matters in Modern Applications

ยท 3 min read
Ibrahim Karim Eddin
Software Engineer & PostgreSQL Extension Developer

Data grows exponentially, but not all data needs to live forever. Here's why automatic Time-To-Live (TTL) functionality is essential for modern applications and how pg_ttl_index solves this problem elegantly.

The Data Retention Problemโ€‹

Modern applications generate massive amounts of data:

  • User sessions that expire
  • Application logs that age out
  • Cache entries with limited lifespans
  • Temporary processing data
  • Time-series metrics

Without proper cleanup, these grow unbounded, leading to:

  • ๐Ÿ’ธ Higher storage costs
  • ๐ŸŒ Slower query performance
  • ๐Ÿ”ฅ Increased backup times
  • ๐Ÿ˜ฐ Maintenance nightmares

Traditional Approaches (And Their Problems)โ€‹

Cron Jobs + DELETE Queriesโ€‹

# Typical cron approach
0 2 * * * psql -c "DELETE FROM sessions WHERE created_at < NOW() - INTERVAL '1 day'"

Problems:

  • External dependency (cron must be running)
  • No coordination across servers
  • Risk of missing cleanup if job fails
  • Hard to monitor and debug

Application-Level Cleanupโ€‹

# Application code
async def cleanup_old_sessions():
await db.execute(
"DELETE FROM sessions WHERE created_at < $1",
datetime.now() - timedelta(hours=24)
)

Problems:

  • Logic scattered across microservices
  • Each service needs its own cleanup code
  • Doesn't run if application is down
  • Hard to maintain consistency

Trigger-Based Solutionsโ€‹

CREATE TRIGGER cleanup_trigger
BEFORE INSERT ON sessions
FOR EACH STATEMENT
EXECUTE FUNCTION cleanup_old_rows();

Problems:

  • Impacts write performance
  • Couples cleanup with inserts
  • Complex to implement correctly
  • Scales poorly

The pg_ttl_index Approachโ€‹

Simply declare your intent:

SELECT ttl_create_index('sessions', 'created_at', 86400);

That's it! The extension handles everything:

  • โœ… Automatic background cleanup
  • โœ… No external dependencies
  • โœ… Optimized batch deletion
  • โœ… Built-in monitoring
  • โœ… Production-ready from day one

Real-World Impactโ€‹

Case Study: SaaS Applicationโ€‹

Before pg_ttl_index:

  • Session table: 50M rows
  • Query latency: 500ms+
  • Storage: 40GB
  • Cleanup: Manual weekly script

After pg_ttl_index:

  • Session table: < 100K rows
  • Query latency: 10ms
  • Storage: 200MB
  • Cleanup: Automatic, zero maintenance

Result: 95% latency reduction, 99% storage savings

Case Study: Analytics Platformโ€‹

Requirements:

  • Raw events: Keep 1 hour
  • Hourly aggregates: Keep 7 days
  • Daily summaries: Keep 90 days

Solution:

SELECT ttl_create_index('raw_events', 'timestamp', 3600, 100000);
SELECT ttl_create_index('hourly_stats', 'hour', 604800, 10000);
SELECT ttl_create_index('daily_stats', 'day', 7776000, 1000);

Result: Tiered retention policy managed automatically by the database.

When to Use TTLโ€‹

Perfect for:

  • ๐Ÿ” Sessions & auth tokens
  • ๐Ÿ“ Application logs
  • ๐Ÿ’พ Cache tables
  • ๐Ÿ“Š Time-series data
  • ๐Ÿ”” Notifications
  • ๐Ÿ“ˆ Metrics & analytics
  • ๐Ÿ›’ Shopping carts
  • ๐ŸŽซ Temporary tickets/codes

Best Practicesโ€‹

1. Match TTL to Business Requirementsโ€‹

-- Session timeout: 30 minutes
SELECT ttl_create_index('sessions', 'last_activity', 1800);

-- Compliance requirement: 90 days
SELECT ttl_create_index('audit_log', 'created_at', 7776000);

2. Archive Before Deletionโ€‹

-- Archive data older than 6 days
INSERT INTO logs_archive
SELECT * FROM logs
WHERE logged_at < NOW() - INTERVAL '6 days';

-- TTL deletes after 7 days
SELECT ttl_create_index('logs', 'logged_at', 604800);

3. Monitor Cleanup Activityโ€‹

-- Regular health checks
SELECT * FROM ttl_summary();
SELECT * FROM ttl_worker_status();

The Future of Data Managementโ€‹

Automatic TTL is becoming a standard feature in modern databases:

  • Redis: Native EXPIRE command
  • MongoDB: TTL indexes
  • DynamoDB: TTL attributes
  • PostgreSQL: pg_ttl_index extension

As data volumes grow, automatic retention management isn't optional - it's essential.

Get Startedโ€‹

Installing pg_ttl_index takes minutes:

# Via PGXN
pgxn install pg_ttl_index

# Or from source
git clone https://github.com/ibrahimkarimeddin/postgres-extensions-pg_ttl
cd postgres-extensions-pg_ttl
make && sudo make install

Check out the documentation for complete installation and usage instructions.


What's your data retention strategy? Share your experiences or questions! Find me on LinkedIn or GitHub.